In [30]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score,confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
sns.set()
%matplotlib inline
In [17]:
#import data (2017 Wisconsin Breast Cancer Diagnostic dataset from UCI machine learning repository)
data = pd.read_csv(r'/Users/shivambadkas/Downloads/data.csv')
In [18]:
data.head()
Out[18]:
id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_mean concave points_mean ... texture_worst perimeter_worst area_worst smoothness_worst compactness_worst concavity_worst concave points_worst symmetry_worst fractal_dimension_worst Unnamed: 32
0 842302 M 17.99 10.38 122.80 1001.0 0.11840 0.27760 0.3001 0.14710 ... 17.33 184.60 2019.0 0.1622 0.6656 0.7119 0.2654 0.4601 0.11890 NaN
1 842517 M 20.57 17.77 132.90 1326.0 0.08474 0.07864 0.0869 0.07017 ... 23.41 158.80 1956.0 0.1238 0.1866 0.2416 0.1860 0.2750 0.08902 NaN
2 84300903 M 19.69 21.25 130.00 1203.0 0.10960 0.15990 0.1974 0.12790 ... 25.53 152.50 1709.0 0.1444 0.4245 0.4504 0.2430 0.3613 0.08758 NaN
3 84348301 M 11.42 20.38 77.58 386.1 0.14250 0.28390 0.2414 0.10520 ... 26.50 98.87 567.7 0.2098 0.8663 0.6869 0.2575 0.6638 0.17300 NaN
4 84358402 M 20.29 14.34 135.10 1297.0 0.10030 0.13280 0.1980 0.10430 ... 16.67 152.20 1575.0 0.1374 0.2050 0.4000 0.1625 0.2364 0.07678 NaN

5 rows × 33 columns

In [21]:
col = data.columns
print(col)
Index(['id', 'diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean',
       'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean',
       'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean',
       'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se',
       'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se',
       'fractal_dimension_se', 'radius_worst', 'texture_worst',
       'perimeter_worst', 'area_worst', 'smoothness_worst',
       'compactness_worst', 'concavity_worst', 'concave points_worst',
       'symmetry_worst', 'fractal_dimension_worst', 'Unnamed: 32'],
      dtype='object')
In [24]:
#removing unnecesary features
y = data.diagnosis
list = ['Unnamed: 32','id','diagnosis']
x = data.drop(list,axis = 1 )
In [25]:
#identifying classifier, M is malignant and B is benign
ax = sns.countplot(y, label = 'Count')
/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.
  warnings.warn(
In [26]:
#checking correlation between features
f,ax = plt.subplots(figsize=(18, 18))
sns.heatmap(x.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax)
Out[26]:
<AxesSubplot:>
In [28]:
# feature selection, identifying which features are correlated and dropping extra ones 
droplist1 = ['perimeter_mean','radius_mean','compactness_mean','concave points_mean','radius_se','perimeter_se','radius_worst','perimeter_worst','compactness_worst','concave points_worst','compactness_se','concave points_se','texture_worst','area_worst']
x1 = x.drop(droplist1,axis = 1 )     
x1.head()
Out[28]:
texture_mean area_mean smoothness_mean concavity_mean symmetry_mean fractal_dimension_mean texture_se area_se smoothness_se concavity_se symmetry_se fractal_dimension_se smoothness_worst concavity_worst symmetry_worst fractal_dimension_worst
0 10.38 1001.0 0.11840 0.3001 0.2419 0.07871 0.9053 153.40 0.006399 0.05373 0.03003 0.006193 0.1622 0.7119 0.4601 0.11890
1 17.77 1326.0 0.08474 0.0869 0.1812 0.05667 0.7339 74.08 0.005225 0.01860 0.01389 0.003532 0.1238 0.2416 0.2750 0.08902
2 21.25 1203.0 0.10960 0.1974 0.2069 0.05999 0.7869 94.03 0.006150 0.03832 0.02250 0.004571 0.1444 0.4504 0.3613 0.08758
3 20.38 386.1 0.14250 0.2414 0.2597 0.09744 1.1560 27.23 0.009110 0.05661 0.05963 0.009208 0.2098 0.6869 0.6638 0.17300
4 14.34 1297.0 0.10030 0.1980 0.1809 0.05883 0.7813 94.44 0.011490 0.05688 0.01756 0.005115 0.1374 0.4000 0.2364 0.07678
In [29]:
f,ax = plt.subplots(figsize=(15, 15))
sns.heatmap(x1.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax)
Out[29]:
<AxesSubplot:>
In [35]:
# split data 80/20 
x_train, x_test, y_train, y_test = train_test_split(x1, y, test_size=0.3, random_state=42)
In [36]:
#use random forest and find accuracy
clf_rf = RandomForestClassifier(random_state=43)      
clr_rf = clf_rf.fit(x_train,y_train)
In [37]:
ac = accuracy_score(y_test,clf_rf.predict(x_test))
print('Accuracy: ',ac)
cm = confusion_matrix(y_test,clf_rf.predict(x_test))
sns.heatmap(cm,annot=True,fmt="d")
Accuracy:  0.9649122807017544
Out[37]:
<AxesSubplot:>
In [38]:
#SelectKBest feature selection 
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
In [40]:
select = SelectKBest(chi2, k=5).fit(x_train, y_train)
print('Score list:', select.scores_)
print('Feature list:', x_train.columns)
Score list: [6.06916433e+01 3.66899557e+04 1.00015175e-01 1.30547650e+01
 1.95982847e-01 3.42575072e-04 4.07131026e-02 6.12741067e+03
 1.32470372e-03 6.92896719e-01 1.39557806e-03 2.65927071e-03
 2.63226314e-01 2.58858117e+01 1.00635138e+00 1.23087347e-01]
Feature list: Index(['texture_mean', 'area_mean', 'smoothness_mean', 'concavity_mean',
       'symmetry_mean', 'fractal_dimension_mean', 'texture_se', 'area_se',
       'smoothness_se', 'concavity_se', 'symmetry_se', 'fractal_dimension_se',
       'smoothness_worst', 'concavity_worst', 'symmetry_worst',
       'fractal_dimension_worst'],
      dtype='object')
In [41]:
#best 5 features according to to SelectKBest are texture_mean, area_mean,smoothness_mean, concavity_mean,symmetry_mean
x_train_2 = select.transform(x_train)
x_test_2 = select.transform(x_test)
#random forest classifier with n_estimators=10 (default)
clf_rf_2 = RandomForestClassifier()      
clr_rf_2 = clf_rf_2.fit(x_train_2,y_train)
ac_2 = accuracy_score(y_test,clf_rf_2.predict(x_test_2))
print('Accuracy is: ',ac_2)
cm_2 = confusion_matrix(y_test,clf_rf_2.predict(x_test_2))
sns.heatmap(cm_2,annot=True,fmt="d")
Accuracy is:  0.9766081871345029
Out[41]:
<AxesSubplot:>
In [43]:
#Recursive Feature Elimination (RFE) uses random forest to assign weights to features and then prune small weights 
#recursively until desired number of features is listed
from sklearn.feature_selection import RFE
clf_rf_3 = RandomForestClassifier()      
rfe = RFE(estimator=clf_rf_3, n_features_to_select=5, step=1)
rfe = rfe.fit(x_train, y_train)
#yields same features as SelectKBest
In [45]:
#RFE with cross validation and random forest classification
from sklearn.feature_selection import RFECV
clf_rf_4 = RandomForestClassifier()
rfecv = RFECV(estimator = clf_rf_4, step = 1, cv = 5, scoring = 'accuracy')
rfecv = rfecv.fit(x_train, y_train)
In [46]:
#show how many features are optimal for model accuracy and which ones they are
print('Optimal number of features :', rfecv.n_features_)
print('Best features :', x_train.columns[rfecv.support_])
Optimal number of features : 13
Best features : Index(['texture_mean', 'area_mean', 'smoothness_mean', 'concavity_mean',
       'fractal_dimension_mean', 'area_se', 'smoothness_se', 'concavity_se',
       'fractal_dimension_se', 'smoothness_worst', 'concavity_worst',
       'symmetry_worst', 'fractal_dimension_worst'],
      dtype='object')
In [52]:
#Use PCA for feature extraction
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=42)
#normalize
x_train_N = (x_train-x_train.mean())/(x_train.max()-x_train.min())
x_test_N = (x_test-x_test.mean())/(x_test.max()-x_test.min())
In [53]:
from sklearn.decomposition import PCA
pca = PCA()
pca.fit(x_train_N)

#plot 
plt.figure(1, figsize=(14, 13))
plt.clf()
plt.axes([.2, .2, .7, .7])
plt.plot(pca.explained_variance_ratio_, linewidth=2)
plt.axis('tight')
plt.xlabel('n_components')
plt.ylabel('explained_variance_ratio_')
Out[53]:
Text(0, 0.5, 'explained_variance_ratio_')
In [ ]: